AGRICULTURE AND NATURAL RESOURCES

Research article

A new species of the genus Hoplobatrachus Peters, 1863 (Anura, Dicroglossidae) from northwestern Thailand

 Michael Cota ${ }^{\mathrm{d}}$, Prateep Duengkae ${ }^{\mathrm{e}}$, Sutee Duangjaie, Mahmudul Hasan ${ }^{\mathrm{f}}$, Chantip Chuaynkern ${ }^{\mathrm{a}}$, Yodchaiy Chuaynkerna, ${ }^{\text {a,* }}$
${ }^{a}$ Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
${ }^{b}$ Salawin National Park, Mae Sariang, Mae Hong Son 58110, Thailand
${ }^{\text {c }}$ Mae Sariang National Park, Mae Sariang, Mae Hong Son 58110, Thailand
${ }^{d}$ Thailand Natural History Museum, National Science Museum, Pathum Thani 12120, Thailand
${ }^{e}$ Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
${ }^{f}$ Department of Fisheries, Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Jamalpur 2012, Bangladesh

Article Info

Article history:

Received 20 July 2022
Revised 4 October 2022
Accepted 13 October 2022
Available online 19 December 2022

Keywords:

Hoplobatrachus, Hoplobatrachus litoralis, Hoplobatrachus rugulosus, Hoplobatrachus tigerinus, Tiger frog

Abstract

Importance of the work: Northwestern Thailand lacks any intensive survey of amphibian fauna; thus, this area is suspected to have undiscovered populations of amphibians. Therefore, conducting field surveys in such areas is essential to fill knowledge gaps about species richness in this animal group. Objectives: To describe a new species of frog genus Hoplobatrachus as new to science. Materials \& Methods: A new species was described based on specimens collected from Salawin National Park, Mae Sariang District, Mae Hong Son province, northwestern Thailand. The new species was separated from its congeners inferred from molecular (16 S and Cytb genes) and morphological information. Results: The new species was distinguished from its congeners based on mitochondrial DNA sequence analyses and morphological comparisons. The species was characterized by the following characters: pointed snout; large size (snout-vent length [SVL] of adult males $=94.8-102.4 \mathrm{~mm}$, SVL of females $=93.2-96.3 \mathrm{~mm}$); presence of mid-dorsal stripe; absence of thin stripe on inner side of tibia; presence of sexual dichromatism; yellow external vocal sac; presence of nuptial pad on base of first finger in adult males; relative length of finger II $<$ IV $<$ I $<$ III, toe I $<$ II $<$ V $<$ III $<$ IV. Main finding: A new frog species was described based on specimens from Thailand.

[^0]
Introduction

The dicroglossid frogs of the genus Hoplobatrachus Peter, 1863 (family Dicroglossidae Anderson, 1871) consist of five species (Frost, 2022): H. crassus (Jerdon, 1853), H. litoralis Hasan, Kuramoto, Islam, Alam, Khan and Sumida, 2012, H. occipitalis (Günther, 1858), H. rugulosus (Wiegmann, 1834) and H. tigerinus (Daudin, 1802). Members of the genus occur widely from Sub-Saharan Africa, south to Angola to northeastern Zambia and Tanzania, Peninsular India, Sri Lanka, Peninsular Malaysia, Myanmar, Thailand, Laos, Cambodia, Vietnam and southern China (introduced to Borneo and Madagascar) (Frost, 2022). Their global conservation status is not critical. Four of these species have been assessed for the IUCN Red List as species of Least Concern (LC): H. crassus (Padhye et al., 2008a), H. occipitalis (International Union for Conservation of Nature and Natural Resources, 2022), H. rugulosus (Diesmos et al., 2004) and H. tigerinus (Padhye et al., 2008b). The LC status results from their wide distribution, tolerance to a broad range of habitats, presumed large population and because their populations are unlikely to be declining rapidly enough to qualify for listing in a more threatened category. The remaining species, H. litoralis, has been considered as endemic in the southeastern corner (Ukhia Upazila, Teknaf district) of Bangladesh (Hasan et al., 2012).
H. tigerinus was included (as subspecies Rana tigerina pantherina) in the work of Taylor (1962) on amphibian fauna in Thailand; however, subsequent work on amphibians in Thailand did not comment on this species. Only H. rugulosus has been listed more recently in the amphibian fauna of Thailand (Chan-ard et al., 1999; Nabhitabhata, 2000; Khonsue and Thirakhupt, 2001; Chan-ard, 2003; Nabhitabhata et al., 2004; Nabhitabhata and Chan-ard, 2005; Chuaynkern and Chuaynkern, 2012; Chuaynkern and Duengkae, 2014; Duengkae et al., 2016; Niyomwan et al., 2019). Prior to these studies, Taylor and Elbel (1958) included Rana tigerina pantherina and Taylor (1962) subsequently added one more (R. rugulosa) to Thai amphibians. H. rugulosus is large, ranging in size ($50-117 \mathrm{~mm}$) and weighing $25-500$ g. Female lays 2,649 eggs with an average length of $1.81 \pm 0.23 \mathrm{~mm}$ ($1.15-2.43 \mathrm{~mm}$) and width of $1.79 \pm 0.24 \mathrm{~mm}(1.15-2.43 \mathrm{~mm})$ (Rongchapho et al., 2021). Its dorsal color ranges from yellow to olive green or grey, with irregular dark markings. H. tigerinus is distributed throughout India, Bangladesh and much of northern Pakistan, southern parts of Nepal,

Bhutan and upper and northern central Myanmar (Smith, 1940; Zug et al., 1998; Hasan et al., 2012) and is considered a complex of several cryptic species. This species was introduced to Madagascar (Frost, 2022). Ongoing taxonomic research in Sri Lanka has revealed that H. tigerinus does not occur in this country, and frogs previously assigned to H. tigerinus are misidentifications of H. crassus (Dutta, 1997; Batuwita et al., 2019). However, the current authors recently collected some specimens from the herpetological survey at Salawin National Park, Mae Hong Son province, northwestern Thailand. These specimens were primarily assigned to the genus Hoplobatrachus based on external morphology alone, according to Taylor (1962). The investigation of their identity at the time has led the current authors to present a new species of the genus Hoplobatrachus based on molecular and morphological analyses.

Materials and Methods

Study area, permission and specimens

Salawin National Park occupies the western part of Mae Hong Son province, northwestern Thailand. It is neighbored by the Salawin Wildlife Sanctuary (Mae Hong Son province) to the north, Chiang Mai province to the east, Tak province to the south and Myanmar to the west. The national park area is approximately $721 \mathrm{~km}^{2}$, extending from 17.989971° to $18.368046^{\circ} \mathrm{N}$ and 97.609530° to $97.893191^{\circ} \mathrm{E}$. Most of the area is covered with high mountains interspersed with lowlands. The elevation is on the range $200-1,027 \mathrm{~m}$ above sea level (a.s.l.), while the lowland rice fields, where samples were collected, are in the range $86-106 \mathrm{~m}$. a.s.l. The vegetation includes dry evergreen forest, mixed deciduous forest and dry dipterocarp forest (Department of National Parks, Wildlife and Plant Conservation, 2022).

The specimens were caught in the field at night by hand. Live photographs were taken ex situ, and then the frogs were euthanized using chloretone solution, preserved in 10% buffer formalin and later transferred into 70\% ethanol. Before preservation in formalin, tissue samples were taken by cutting pieces from the liver and preserving them in 99% ethanol for molecular analyses. The specimens were deposited at the Khon Kaen University Vertebrate Collection (KKUC, Khon Kaen University, Khon Kaen province, northeastern Thailand) and the Thailand Natural History Museum (THNHM, the National Science Museum,

Pathum Thani province, central Thailand). Most specimens are cross-catalogued at both institutions, in which case voucher numbers are reported as KKUC/THNHM. Permission for conducting research in a protected area (Salawin National Park) and for specimen collection were obtained from the Department of National Parks, Wildlife and Plant Conservation (permission number: 0907.4/25571). The research was reviewed and approved by the Institutional Animal Care and Use Committee of Khon Kaen University, based on the Ethics of Animal Experimentation of National Research Council of Thailand (reference no. 660201.2.11/ 235[44]).

DNA extraction, polymerase chain reaction amplification and sequencing

Genomic DNA of three unidentified individuals of Hoplobatrachus was extracted from liver tissue samples using the FavorPrep ${ }^{\text {TM }}$ Tissue Genomic DNA Extraction Mini Kit (Favorgen Biotech Corp.) according to the manufacturer's instructions. The extracted DNA solutions were used to amplify partial portions of the 16 S rRNA gene (16 S) and cytochrome b gene (Cytb). Polymerase chain reaction (PCR) amplification of partial fragments of 16 S was performed using the F51 (5^{\prime}-CCCGCCTGTTTACCAAAAACAT- 3^{\prime}), R51 (5^{\prime}-GGTCTGAACTCAGATCACGTA- 3^{\prime}) primer pair (Sumida et al., 2002) and the 16SA-L (5^{\prime}-CGCCTGTTTATCAAAAACAT- 3^{\prime}) and 16 SBH (5^{\prime}-CCGGTCTGAACTCAGATCACGT-3') primer pair (Palumbi et al., 1991). PCR amplification of a partial fragment of Cytb was performed using the HoploGluF-18 (5^{\prime} - TAACTCGGACCTGTAGTCTGA- 3^{\prime}) and HoploDloopR-46(5'-GAGTGTACTTGAAGATATGCTTG-3') primer pair (Sultana et al., 2016). PCR was performed with an initial denaturation at $95^{\circ} \mathrm{C}$ for 4 min followed by 35 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 40 s , annealing at $55^{\circ} \mathrm{C}$ (for 16 S)/ $53^{\circ} \mathrm{C}$ (for Cytb) for 40 s and extension at $72^{\circ} \mathrm{C}$ for 60 s , with a final extension at $72{ }^{\circ} \mathrm{C}$ for 10 min . The PCR products were purified using a FavorPrep GEL/PCR Purification Kit (Favorgen Biotech Corp.) according to the manufacturer's instructions. The purified PCR products were sequenced in the Molecular Informatics Laboratory of Macrogen Company, Korea, using the same primers as those used for PCR amplification. All sequences were deposited in GenBank as MW244087-MW244089 for 16S and MW310223-MW310225 for the Cytb gene, respectively (Table 1).
Table 1 Continued

ID	Identified species		Voucher	Locality	16S	Cytb	Reference
	Other study	Current study					
19	H. litoralis	H. salween sp. nov.	USNM 587325	Yangon, Mingalardon Township,	MG935819	-	Mulcahy et al., 2018
				Hlawga Wildlife Park, Myanmar			
20	H. litoralis	H. salween sp. nov.	USNM 587404	Yangon, Mingalardon Township,	MG935820	-	Mulcahy et al., 2018
				Hlawga Wildlife Park, Myanmar			
21	H. litoralis	H. litoralis	Lit_Uk_03	Ukhia, Cox's Bazar, Bangladesh	-	LC121012	Sultana et al., 2016
22	H. litoralis	H. litoralis	Lit_Cx_01	Cox's Bazar, Bangladesh	-	LC121001	Sultana et al., 2016
23	H. litoralis	H. litoralis	Lit_Cx_02	Cox's Bazar, Bangladesh	-	LC121002	Sultana et al., 2016
24	H. litoralis	H. litoralis	Lit_Tk_05	Teknaf, Cox's Bazar, Bangladesh	-	LC121013	Sultana et al., 2016
25	H. occipitalis	H. occipitalis	ZMB 79256	Guinea	-	KF991310	Barej et al., 2014
26	H. occipitalis	H. occipitalis	-	Mauritania	-	AJ564733	Grosjean et al., 2004
27	H. occipitalis	H. occipitalis	occ-afri-3	Tanzania	-	AB274150	Alam et al., 2008
28	H. occipitalis	H. occipitalis	occ-afri-1	Tanzania	AB272599	AB274148	Alam et al., 2008
29	H. occipitalis	H. occipitalis	occ-afri-2	Tanzania	AB272600	AB274149	Alam et al., 2008
30	H. occipitalis	H. occipitalis	occ-afri-4	Tanzania	-	AB290607	Alam et al., 2008
31	H. occipitalis	H. occipitalis	ZFMK 65186	Uganda	-	AY014388	Kosuch et al., 2001
32	H. chinensis	H. rugulosus	Chi_VtHL_20629	Huu Lien, Vietnam	-	LC121019	Sultana et al,. 2016
33	H. chinensis	H. rugulosus	Chi_VtHL_20630	Huu Lien, Vietnam	-	LC121020	Sultana et al., 2016
34	H. chinensis	H. rugulosus	Chi_LLNPP_20696	Long Nai, Phongsaly, Laos	-	LC121018	Sultana et al., 2016
35	H. chinensis	H. rugulosus	Chi_LLNPP_20697	Long Nai, Phongsaly, Laos	-	LC121017	Sultana et al., 2016
36	H. chinensis	H. rugulosus	Chi_Laos_20626	Vang Vieng, Laos	-	LC121016	Sultana et al., 2016
37	H. chinensis	H. rugulosus	Chi_LaLP_20647	Luang Prabang, Laos	-	LC121014	Sultana et al., 2016
38	H. chinensis	H. rugulosus	Chi_Laos_20625	Vang Vieng, Laos	-	LC121015	Sultana et al., 2016
39	H. chinensis	H. rugulosus	Chin-Chacho-3663	Chachoengsao, Thailand	AB636617	AB636599	Alam et al., 2012
40	H. chinensis	H. rugulosus	Chin-Chacho-3909	Chachoengsao, Thailand	AB636616	AB636598	Alam et al., 2012
41	H. chinensis	H. rugulosus	Chin-Chacho-3911	Chachoengsao, Thailand	AB636615	AB636597	Alam et al., 2012
42	H. rugulosus	H. rugulosus	THW1	Hainan, China	JX181763	JX181763	Yu et al., 2015
43	H. chinensis	H. rugulosus	Chin-Nongkh-3	Nong Khai, Thailand	-	AB636600	Alam et al., 2012
44	H. chinensis	H. rugulosus	Hchi-Th1	Nong Khai, Thailand	AB272596	AB274144	Alam et al., 2008
45	H. chinensis	H. rugulosus	Hchi-Ve	Huu Lien, Vietnam	AB290414	AB290603	Alam et al., 2008
46	H. chinensis	H. rugulosus	Hchi-La	Long Nai, Phongsaly province, Laos	AB290417	AB290601	Alam et al., 2008
47	H. chinensis	H. rugulosus	Hchi-Th4	Phangnga, Thailand	AB290416	AB290606	Alam et al., 2008
48	H. rugulosus	H. rugulosus	Phang-nga 1	Phangnga, Thailand	AB514546	AB514487	Pansook et al., 2012
49	H. chinensis	H. rugulosus	Hchi-Th2, 3	Ko Chang, Thailand	-	AB274146	Alam et al., 2008
50	H. chinensis	H. rugulosus	JHHWW001	Zhejiang, Jinhua, China	HM104684	HM104684	Yu et al., 2012
51	H. rugulosus	H. rugulosus	Anhui10359.1	Jinhua, China	KC196066	KC196066	Unpublished
52	H. tigerinus	H. tigerinus	Tig_Fulp_HT20	Phulpur, Bangladesh	-	LC120980	Sultana et al., 2016
53	H. tigerinus	H. tigerinus	Tig_Rang_HT31	Rangpur, Bangladesh	-	LC120958	Sultana et al., 2016
54	H. tigerinus	H. tigerinus	Tig_Syd_HT20	Saidpur, Bangladesh	-	LC120955	Sultana et al., 2016
55	H. tigerinus	H. tigerinus	Tig_Syd_HT28	Saidpur, Bangladesh	-	LC120956	Sultana et al., 2016
56	H. tigerinus	H. tigerinus	Tig_Rang_HT29	Rangpur, Bangladesh	-	LC120957	Sultana et al., 2016
57	H. tigerinus	H. tigerinus	Tig_Din_HT17	Dinajpur, Bangladesh	-	LC120954	Sultana et al., 2016

Table 1 Continued

ID	Identified species		Voucher	Locality	16S	Cytb	Reference
	Other study	Current study					
58	H. tigerinus	H. tigerinus	Tig_Net_HT30	Netrokona, Bangladesh	-	LC120973	Sultana et al., 2016
59	H. tigerinus	H. tigerinus	Tig_CNSM_HT22	Sonamasjid, Bangladesh	-	LC120960	Sultana et al., 2016
60	H. tigerinus	H. tigerinus	Tig_Pabna_HT21	Pabna, Bangladesh	-	LC120964	Sultana et al., 2016
61	H. tigerinus	H. tigerinus	Tig_Shamb_HT26	Shamvuganj, Bangladesh	-	LC121000	Sultana et al., 2016
62	H. tigerinus	H. tigerinus	Tig_NG_HT27	Narsingdi, Bangladesh	-	LC120983	Sultana et al., 2016
63	H. tigerinus	H. tigerinus	Tig_Lal_HT19	Lalmonirhat, Bangladesh	-	LC120953	Sultana et al., 2016
64	H. tigerinus	H. tigerinus	Tig_Jamal_HT18	Jamalpur, Bangladesh	-	LC120969	Sultana et al., 2016
65	H. tigerinus	H. tigerinus	Tig_BAU_HT15	BAU campus, Bangladesh	-	LC120978	Sultana et al., 2016
66	H. tigerinus	H. tigerinus	Tig_BAU_HT16	BAU campus, Bangladesh	-	LC120979	Sultana et al., 2016
67	H. tigerinus	H. tigerinus	Tig_SK_HT04	Satkhira, Bangladesh	-	LC120986	Sultana et al., 2016
68	H. tigerinus	H. tigerinus	Tig_Shamb_HT23	Shamvuganj, Bangladesh	-	LC120999	Sultana et al., 2016
69	H. tigerinus	H. tigerinus	Tig_Jamal_HT24	Jamalpur, Bangladesh	-	LC120970	Sultana et al., 2016
70	H. tigerinus	H. tigerinus	Tig_Fulp_HT23	Phulpur, Bangladesh	-	LC120981	Sultana et al., 2016
71	H. tigerinus	H. tigerinus	Tig_Net_HT23	Netrokona, Bangladesh	-	LC120972	Sultana et al., 2016
72	H. tigerinus	H. tigerinus	Tig_Jagan_HT23	Jagannathganj, Bangladesh	-	LC120967	Sultana et al., 2016
73	H. tigerinus	H. tigerinus	Tig_Jagan_HT25	Jagannathganj, Bangladesh	-	LC120968	Sultana et al., 2016
74	H. tigerinus	H. tigerinus	Tig_BAU_HT02	BAU campus, Bangladesh	-	LC120977	Sultana et al., 2016
75	H. tigerinus	H. tigerinus	Tig_IS_HT01	Iswardi, Bangladesh	-	LC120965	Sultana et al., 2016
76	H. tigerinus	H. tigerinus	Tig_Chr_HT06	Churkhai, Bangladesh	-	LC120998	Sultana et al., 2016
77	H. tigerinus	H. tigerinus	Tig_Chur_HT06	Chittagong, Bangladesh	-	LC120996	Sultana et al., 2016
78	H. tigerinus	H. tigerinus	Tig_Bn_HT06	Bandarban, Bangladesh	-	LC120995	Sultana et al., 2016
79	H. tigerinus	H. tigerinus	Tig_NG_HT06	Narsingdi, Bangladesh	-	LC120982	Sultana et al., 2016
80	H. tigerinus	H. tigerinus	Tig_C_HT06	Dirai, Bangladesh	-	LC120975	Sultana et al., 2016
81	H. tigerinus	H. tigerinus	Tig_Syl_HT06	Sylhet, Bangladesh	-	LC120974	Sultana et al., 2016
82	H. tigerinus	H. tigerinus	Tig_IS_HT06	Iswardi, Bangladesh	-	LC120966	Sultana et al., 2016
83	H. tigerinus	H. tigerinus	Tig_Pabna_HT06	Pabna, Bangladesh	-	LC120963	Sultana et al., 2016
84	H. tigerinus	H. tigerinus	Tig_Br_HT07	Barguna, Bangladesh	-	LC120988	Sultana et al., 2016
85	H. tigerinus	H. tigerinus	Tig_Vo_HT09	Bhola, Bangladesh	-	LC120992	Sultana et al., 2016
86	H. tigerinus	H. tigerinus	Tig_Pkun_HT09	Patuakhali University, Bangladesh	-	LC120990	Sultana et al., 2016
87	H. tigerinus	H. tigerinus	Tig_Khul_HT09	Khulna, Bangladesh	-	LC120985	Sultana et al., 2016
88	H. tigerinus	H. tigerinus	Tig_CN_HT10	Rajshahi, Bangladesh	-	LC120962	Sultana et al., 2016
89	H. tigerinus	H. tigerinus	Tig_CNSM_HT11	Sonamasjid, Bangladesh	-	LC120959	Sultana et al., 2016
90	H. tigerinus	H. tigerinus	Tig_No_HT05	Noakhali, Bangladesh	-	LC120989	Sultana et al., 2016
91	H. tigerinus	H. tigerinus	Tig_Khul_HT08	Khulna, Bangladesh	-	LC120984	Sultana et al., 2016
92	H. tigerinus	H. tigerinus	Tig_SK_HT12	Satkhira, Bangladesh	-	LC120987	Sultana et al., 2016
93	H. tigerinus	H. tigerinus	Tig_Snd_HT13	Sandwip, Bangladesh	-	LC120993	Sultana et al., 2016
94	H. tigerinus	H. tigerinus	Tig_Pkun_HT13	Patuakhali University, Bangladesh	-	LC120991	Sultan aet al., 2016
95	H. tigerinus	H. tigerinus	Tig_Chur_HT14	Chittagong, Bangladesh	-	LC120997	Sultana et al., 2016
96	H. tigerinus	H. tigerinus	Tig_C_HT14	Dirai, Bangladesh	-	LC120976	Sultana et al., 2016
97	H. tigerinus	H. tigerinus	Tig_CN_HT03	Rajshahi, Bangladesh	-	LC120961	Sultana et al., 2016
98	H. tigerinus	H. tigerinus	Tig_Raoj_HT32	Raojan, Chittagong, Bangladesh	-	LC120994	Sultana et al., 2016
99	H. tigerinus	H. tigerinus	Tig_Kish_HT33	Kishorganj, Bangladesh	-	LC120971	Sultana et al., 2016

Table 1 Continued

ID	Identified species		Voucher	Locality	16S	Cytb	Reference
	Other study	Current study					
100	H. tigerinus	H. tigerinus	Tig_Ishr_20325	Shirva, India	-	LC121011	Sultana et al., 2016
101	H. tigerinus	H. tigerinus	Tig_IBM_20337	Bajpe, India	-	LC121004	Sultana et al., 2016
102	H. tigerinus	H. tigerinus	Tig_Ishr_20324	Shirva, India	-	LC121010	Sultana et al., 2016
103	H. tigerinus	H. tigerinus	Tig_IPM_20030	Padil, India	-	LC121006	Sultana et al., 2016
104	H. tigerinus	H. tigerinus	Tig_Ikrn_20137	Karnoor, India	-	LC121008	Sultana et al., 2016
105	H. tigerinus	H. tigerinus	Tig_Ikrn_20138	Karnoor, India	-	LC121009	Sultana et al., 2016
106	H. tigerinus	H. tigerinus	Tig_IBM_20338	Bajpe, India	-	LC121005	Sultana et al., 2016
107	H. tigerinus	H. tigerinus	Tig_IBM_20332	Bajpe, India	-	LC121003	Sultana et al., 2016
108	H. tigerinus	H. tigerinus	Tig_IPM_20031	Padil, India	-	LC121007	Sultana et al., 2016
109	H. tigerinus	H. tigerinus	Htig-In1	Padil, India	AB272594	AB274137	Alam et al., 2008
110	H. tigerinus	H. tigerinus	Htig-In2	Bajpe, India	AB290412	AB274139	Alam et al., 2008
111	H. tigerinus	H. tigerinus	IABHU 4001	Mymensingh, Bangladesh	AB671183	AB671195	Hasan et al., 2012
112	H. tigerinus	H. tigerinus	IABHU 4000	Mymensingh, Bangladesh	AB671182	AB671194	Hasan et al., 2012
113	H. tigerinus	H. tigerinus	-	Mymensingh, Bangladesh	AP011543	AP011543	Alam et al., 2010
114	E. cyanophlyctis	E. cyanophlyctis	Ecya-Ba1, 2	BAU campus, Mymensingh, Bangladesh	AB272601	AB274151	Alam et al., 2008
115	E. hexadactylus	E. hexadactylus	hex-khul-1	Khulna, Bangladesh	AB272605	AB274163	Alam et al., 2008

Phylogenetic analyses

The combined 16 S and Cytb data matrix consisted of 37 accessions; Cytb alone consisted of 110 accessions. Both data matrices represented six species of Hoplobatrachus. Most of the DNA sequences (other than the new species) were obtained from previous studies (Kosuch et al., 2001; Grosjean et al., 2004; Alam et al., 2008, 2010, 2012; Hasan et al., 2012; Pansook et al., 2012; Yu et al., 2012, 2015; Barej et al., 2014; Sultana et al., 2016; Mulcahy et al., 2018). Two Euphlyctis species (E. cyanophlyctis and E. hexadactylus) were used as the outgroup. DNA sequences were aligned using the SeaView version 4 software (Gouy et al., 2010). Phylogenetic analyses were performed using Bayesian inference (BI) and Maximum Parsimony (MP). BI was performed using the MrBayes 3.2.1 program (Ronquist et al., 2012). The Bayesian analysis parameters were estimated from the data set using the MrModelTest 2.2 program (Nylander, 2004). Nucleotide substitution models for BI analyses were chosen based on their Akaike information criterion. Two independent runs were conducted, each of which was performed for 10 million generations and sampled every 1,000 generations with the first 25% samples discarded as burn-in, resulting in a potential scale reduction factor of <0.005. A 50% majority-rule consensus of the sampled trees was constructed to calculate the posterior probabilities of the tree nodes. A heuristic search for the MP was performed using the PAUP* 4.0b10 program (Swofford, 2002) with 1,000 replicates, sequences random addition and tree-bisection-reconnection branching. Non-parametric bootstrap support was estimated using 1,000 replicates of full heuristic searches. Uncorrected pairwise sequence divergences (p-distances) were calculated using the MEGA X program (Kumar et al., 2018).

Morphology

The frog description format followed other previous studies (such as Ohler, 1996; Ohler and Dubois, 1999; Chuaynkern et al., 2010). The specimen photographs were taken using a digital camera and improved using the Adobe ${ }^{\circledR}$ Photoshop CS6 software (Adobe Systems Inc.). The habitat and live photographs of frogs were taken in the field using a digital camera. Measurements were made with a pair of digital calipers to the nearest 0.1 mm . The abbreviations used for measurements were: SVL, snout-vent length; HW, head width; HL, head length (from the back of the mandible to the tip of the snout); MN, distance from the back of the mandible
to the nostril; MFE, distance from the back of the mandible to the front of the eye; MBE, distance from the back of the mandible to the back of the eye; IFE, distance between the fronts of the eyes; IBE, distance between the back of the eyes; IN, internarial space; EN, distance from the front of the eye to the nostril; EL, eye length; SN, distance from the nostril to the tip of the snout; SL, distance from the front of the eye to the tip of the snout; TYD, greatest tympanum diameter; TYE, distance from tympanum to the back of the eye; IUE, minimum distance between upper eyelids; UEW, maximum inter upper eyelid width; HAL, hand length (from the base of the outer palmar tubercle to the tip of the toe); FLL, forelimb length (from the elbow to the base of the outer tubercle); TFL, third finger length (from the base of the first subarticular tubercle); fd1-fd4, width of pads of fingers 1 to 4; fw1-fw4, width of fingers 1-4; (hindlimb) FL, femur length (from vent to knee); TL, tibia length; TW, tibia width; FOL, foot length (from the base of the inner metatarsal tubercle to the tip of the toe); FTL, fourth toe length (from the base of the first subarticular tubercle to the tip of toe 4); TFOL, length of tarsus and foot (from base of tarsus to tip of fourth toe); td1-td5, width of pads of the toes $1-5$; tw1-tw5, width of toes 1 to 5 ; IMT, length of inner metatarsal tubercle; ITL, inner toe length; (webbing) MTTF, distance from the distal edge of the metatarsal tubercle to the maximum incurvation of the web between third and fourth toe; TFTF, distance from the maximum incurvation of the web between the third and fourth toes to the tip of the fourth toe; MTFF, distance from the distal edge of the metatarsal tubercle to the maximum incurvation of the web between the fourth and fifth toes; FFTF, distance from the maximum incurvation of the web between the fourth and fifth toes to the tip of the fourth toe; WTF, webbing between the third and fourth toes (from the base of the first subarticular tubercle); WFF, webbing between the fourth and fifth toes (from the base of the first subarticular tubercle); WI, webbing between the third and fourth toes when folded along the fourth toe (from the base of the first subarticular tubercle); WII, webbing between the fourth and fifth toes when folded along the fourth toes (from the base of the first subarticular tubercle). Abbreviations of the museums and institutions in which the specimens were deposited are as follows: BMNH, British Museum of Natural History (London, UK), KKUC, Khon Kaen University Vertebrate Collection (Khon Kaen, Thailand), THNHM, Thailand Natural History Museum (Pathum Thani, Thailand).

Results

Molecular analysis

The aligned combined 16 S and Cytb dataset contained 37 individuals and 1,188 characters, whereas the Cytb data set comprised only 110 individuals and 1,139 characters. BI analyses produced trees of almost identical topology (Figs. 1 and 2). Hoplobatrachus was a monophyletic group, as indicated by a high posterior probability of BI (BPP \geq 95%) and high bootstrap supports of MP (MP-BS $\geq 95 \%$). The African H. occipitalis was a sister group of the other five Asian species-H. crassus, H. rugulosus, H. tigerinus, H. litoralis and the unidentified species. A Bayesian tree of the combined 16 S and Cytb dataset revealed six well-demarcated clades, identified as clades 1-6 (Fig. 1). Clade 1 contained H. litoralis from Bangladesh, while clade 2 contained the new species from Thailand and Myanmar (previously H. litoralis). Clade 3 contained two groups of H. tigerinus ($\mathrm{BPP} \geq 75 \%$, MP$\mathrm{BS} \leq 75 \%$), with the first from Bangladesh and the second from India. Clade 4 contained 11 H . rugulosus individuals and was further separated into two groups (BPP and MP-BS $\leq 75 \%$), with the first from southeastern Thailand (Chachoengsao province) and China (Hainan) and the second from upper northeastern Thailand (Nong Khai province), northern Laos (Phongsaly), northern Vietnam (Huu Lien) and China (Jinhua). Clades 5 and 6 contained two individuals of H. occipitalis from Tanzania and H. crassus from India and Bangladesh, respectively. The Bayesian tree of the dataset of the Cytb sequences was similar to the tree of concatenated 16 S and Cytb tree (Fig. 2). The Asian Hoplobatrachus species formed a monophyletic group with respect to the African Hoplobatrachus (H. occipitalis). Separation of H. litoralis and new species was well supported by BPP 1.0 and MP-BS 99\%. The relationship among the Hoplobatrachus species was concordant with other studies (Kosuch et al., 2001; Hasan et al., 2012).

The sequences of unidentified individuals from Thailand (Salawin National Park, Mae Hong Son) and H. litoralis from Myanmar (Bago and Yangon) differed from those of other Hoplobatrachus species. This species appeared to be closer to H. litoralis than other species because the genetic divergence was reduced (Table 2). However, the sequences of the unidentified specimens, and H. litoralis, from Myanmar formed a clade separate from H. litoralis of Bangladesh, according to both the combined gene set and Cytb-only trees. The sequences from Salawin National Park and H. litoralis from

Myanmar formed a monophyletic group (clade 2, BPP = 1.0, MP-BS 99\%), which was further divided into two subclades with a low BPP (Fig. 1). This suggested that these subgroups have the same taxon. The average sequence divergence levels for 16 S between H. salween and H. occipitalis, H. crassus, H. rugulosus, H. tigerinus and H. litoralis were $13.8 \%, 9.3 \%$, $5.7 \%, 5.2 \%$ and 3.1%, respectively, whereas the divergence levels of Cytb between H. salween and H. occipitalis, H. crassus, H. rugulosus, H. tigerinus and H. litoralis were $22.5 \%, 19.8 \%, 16.8 \%, 12.3 \%$ and 11.5% respectively
(Table 2).The average intraspecific 16 S genetic divergence levels of the new species, H. occipitalis, H. crassus, H. rugulosus, H. tigerinus and H. litoralis were $1.4 \%, 0.2 \%, 1.2 \%$, $2.0 \%, 1.2 \%$ and 1.8%, respectively, compared to $0.1 \%, 1.5 \%$, $0.12 \%, 7.4 \%, 10.2 \%$ and 1.0%, respectively, in Cytb.

Based on the molecular and morphological differences, the specimens from Salawin National Park, Mae Hong Son province, northwestern Thailand represent an unnamed species, which is described here as a new species of the genus Hoplobatrachus.

Fig. 1 Bayesian tree of $1,188 \mathrm{bp}$ nucleotide sequence of mitochondrial ($16 \mathrm{~S}+\mathrm{Cytb}$) genes for samples of Hoplobatrachus salween sp. nov. and related species, with Euphlyctis cyanophlyctis and E. hexadactylus as out groups, where numbers above nodes represent Bayesian posterior probabilities $\geq 75 \%$ and bootstrap support for MP $\geq 75 \%$ (BPP/MP-BS). BPP and MP-BP values below 75% are indicated as ' - '.

Fig. 2 Bayesian tree of 1,139 bp nucleotide sequence of mitochondrial Cytb gene for samples of Hoplobatrachus salween sp. nov. and related species, with Euphlyctis cyanophlyctis and E. hexadactylus as out groups, where numbers above nodes represent Bayesian posterior probabilities $\geq 75 \%$ and bootstrap support for MP $\geq 75 \%$ (BPP/MP-BS). BPP and MP-BP values below 75% are indicated as ' - '.

Table 2 Average of uncorrected pairwise sequence divergences (p-distances) in 16S and Cytb of Hoplobatrachus salween sp. nov. and related species

16S						
	H. occipitalis	H. crassus	H. rugulosus	H. tigerinus	H. litoralis	H. salween sp. nov.
H. occipitalis $(n=2)$	-	-	-	-	-	-
H. crassus $(n=2)$	12.1	-	-	-	-	-
H. rugulosus $(n=11)$	12.2	7.9	-	-	-	-
H. tigerinus $(n=5)$	13.0	7.6	4.0	-	-	-
H. litoralis $(n=9)$	13.9	8.8	5.7	4.5	-	-
H. salween sp. nov. $(n=6)$	13.8	9.3	5.7	5.2	3.1	-
Cytb						
H. occipitalis $(n=7)$	-	23.7	20.7	20.7	22.1	22.5
H. crassus $(n=5)$	-	-	19.4	19.3	20.97	19.8
H. rugulosus $(n=20)$	-	-	-	16.8	17.0	16.8
H. tigerinus $(n=62)$	-	-	-	-	12.6	12.3
H. litoralis $(n=13)$	-	-	-	-	-	11.5
H. salween sp. nov. $(n=3)$	-	-	-	-	-	-

Hoplobatrachus salween sp. nov.

Holotype: KKUC 01173/THNHM 26829 (field no. SWN 024; Figs. 3 and 4), adult female, collected by Likhit Waiprom on 18 November 2016 from Baan Thataphung ($18.078992^{\circ} \mathrm{N}$, 97.696349° E; ca. 106 m a.s.l.), Salawin National Park, Mae Sariang district, Mae Hong Son province, northwestern Thailand.

Paratypes: KKUC 01175/ THNHM 26830 (field no. SM 06976, adult female), KKUC 01174/THNHM 26831 (field no. SM 06975, adult male) and KKUC01176/THNHM 16832 (field no. SM 06977, adult male), collected by Yodchaiy Chuaynkern, Sunchai Makchai, Likhit Waiprom on 14 June $2017,18.030062^{\circ} \mathrm{N}, 97.722268^{\circ} \mathrm{E}$; ca 86 m a.s.1.), Salawin National Park, Mae Sariang district, Mae Hong Son province, northwestern Thailand. THNHM 26827-28 (2 adult females), data as the holotype.

Comparative materials: Hoplobatrachus rugulosus (28 adult females, 25 adult males): Thailand: Bangkok: THNHM 09297-98; Chanthaburi: THNHM 0319798, 07262-63; Chiang Mai: THNHM 06858, 09410;

Fig. 3 Photographs of the adult female Hoplobatrachus salween sp. nov. holotype (KKUC 01173/THNHM 26829) in preservative: (A) dorsal view; (B) ventral view

Chiang Rai: BMNH 1974.2085, THNHM 11067-70; Chon Buri: THNHM 00124, 07561, 09210-11, 0929195, 09299; Lampang: BMNH 1974.2083; Nakhon Nayok: THNHM 26746; Nakhon Ratchasima: THNHM 07032-34, 24281; Nakhon Si Thammarat: THNHM 28349; Narathiwat: THNHM 18726; Pattani: THNHM 26526; Phayao: THNHM 25836; Phitsanulok: THNHM 12654; Songkhla: THNHM 08322; Ubon Ratchathani: THNHM 28194-95; Uthai Thani: THNHM 19205, 19207-10; No locality: THNHM 02346, $04467,05736,06635,07342-43,09296,12690,3$ uncatalogued specimens.

Etymology and other names: The specific name "salween" refers to the Salween River (known in Myanmar as the Thanlyin River and in China as the Nu River). The Salween, which is the $26^{\text {th }}$ longest river (about $2,880 \mathrm{~km}$) in the world, is a very important river for China, Myanmar and Thailand. The river flows from the Tibetan Plateau through China, Myanmar, and Thailand into the Andaman Sea. An English name "Salween Bullfrog" and a Thai name "Kob Salawin" are suggested by the current study.

Fig. 4 Hoplobatrachus salween sp. nov. female holotype (KKUC 01173/ THNHM 26829): (A) lateral view of head; (B) right hand; (C) right foot

Diagnosis: Hoplobatrachus salween sp. nov. is characterized by the following combination of characters: body slightly stout; pointed snout; SVL of adult males 98.6 ± 5.42 ($94.8-102.4 \mathrm{~mm}, n=2$), females $94.1 \pm 1.49(93.2-96.3 \mathrm{~mm}$, $n=4$); presence of mid-dorsal stripe; absence of thin stripe on inner side of tibia; presence of sexual dichromatism (completely yellow in whole body and limbs); presence of external vocal sac and vocal sac opening in adult males; presence of nuptial pad on base of the first finger in adult males; relative finger lengths II $<$ IV $<$ I $<$ III, toe I $<$ II $<$ V $<$ III $<$ IV; phylogenetic topological position close to H. litoralis (3.1\% of 16 S and 11.5% of Cytb) and H. tigerinus (5.1% of 16 S and 12.3% of Cytb).

Description of the holotype (Figs. 3 and 4)

Frog of large size (SVL 93.2 mm), body slightly stout.
Head of moderate size, widely ovate in dorsal view; longer than wide (HW 33.0 mm ; HL 35.3 mm ; MN 29.6 mm ; MFE 23.4 mm ; MBE 14.5 mm), flat above. Snout pointed in dorsal and lateral views, protruding, its length (SL 15.3 mm) longer than horizontal diameter of eye (EL 8.8 mm). Canthus rostralis rounded, loreal region concave, vertical in cross-section. Interorbital space concave, narrower (IUE 3.9 mm) than upper eyelid (UEW 6.4 mm) and internarial distance (IN 5.4 mm); distance between fronts of eyes (IFE 13.5 mm) 1.5 times in distance between backs of eyes (IBE 20.0 mm). Nostril oval, directed posterolaterally, with flap of skin posteriorly, closer to tip of snout (SN 5.3 mm) than to eye (EN 8.3 mm). Pupil rounded (EL 8.8 mm). Tympanum (TYD 5.8 mm) distinct, oblique, 66% of eye diameter; tympanum to eye distance (TYE $2.8 \mathrm{~mm}) 50 \%$ of tympanum diameter. Pineal ocellus absent. Vomerine ridge present and large, bearing numerous large teeth ($n=9 / 10$ in left and right, respectively), teeth curve towards to body axis); with an angle of 50° to body axis, closer to choanae than each other, 6.2 times longer than distance between them. Tongue large, cordate, not emarginated, bearing no median lingual process. Tooth-like projections on lower jaw absent.

Arm long and strong; forearm (FLL 20.1 mm) longer than hand (HAL 18.5 mm); slightly enlarged. Finger I longer than II; fingers III (TFL 9.6 mm) and IV long and strong. Relative finger lengths: II $<$ IV $<$ I $<$ III. Tips of fingers rounded, not enlarged without lateroventral grooves on fingers I-IV, fingers I and IV, slightly wide compared to finger width (fd1 1.6 mm , fw1 1.1 mm ; fd2 1.0 mm , fw2 1.4 mm ; fd3 1.2 mm , fw3 1.3 mm ; fd4 1.1 mm , fw4 1.0 mm). Fingers with dermal fringe on inner side of fingers II and III; webbing on fingers absent. Subarticular tubercles
prominent rounded, single, all present. Prepollex distinct, oval; two distinct palmar tubercle oval; supernumerary tubercles absent.

Hind limbs long; heels overlapping when limbs are folded at right angles to body; tibia 2.9 times longer (TL 50.1 mm) than wide (TW 17.5 mm), longer than thigh (FL 46.6 mm) and longer than distance from base of internal metatarsal tubercle to tip of toe IV (FOL 46.4 mm). Toes long and strong, toe IV (FTL 27.1 $\mathrm{mm}) 2.9$ times distance from base of tarsus to tip of toe IV (TFOL 71.3 mm). Relative lengths of toes: $\mathrm{I}<\mathrm{II}<\mathrm{V}<\mathrm{III}<$ IV. Tips of all toes rounded, not enlarged, without lateroventral grooves, slightly wide compared to toe width (td1 1.2 mm , twl 1.1 mm ; td2 1.2 mm , tw2 1.0 mm ; td3 1.3 mm , tw3 0.9 mm ; td4 1.1 mm , tw4 0.9 mm ; td5 1.0 mm , tw5 0.8 mm). Webbing present, large: I 1½-0 II 1½-0 III 1½-1 $1 / 2$ IV-0 V (WTF 10.4 mm , WFF 9.6 mm; WI 10.2 mm , WII 6.8 mm ; MTTF 25.9 mm , MTFF 26.9 mm , TFTF 17.3 mm, FFTF 20.2 mm). Dermal fringe along toe V present: from tip of toe to the position of the outer metatarsal tubercle. Subarticular tubercle prominent, elliptical or rounded, simple, all present. Inner metatarsal tubercle prominent, distinct, elongate, its length (IMT 4.6 mm) 2.5 times in length of toe I (ITL 11.2 mm). Tarsal folds present. Outer metatarsal tubercle absent; supernumerary tubercles absent; tarsal tubercle absent.

Snout, between eyes and side of head smooth; anterior and posterior parts of back smooth with longitudinal fold; upper and lower parts of flank smooth. Dorsolateral folds absent; supratympanic fold distinct, prominent from posterior eye to mandible; parotoid glands absent; cephalic ridges absent; coossified skin absent. Dorsal parts of forelimb, thigh, tibia, and tarsus smooth. Tibia with tubercles. Chest, belly, and ventral part of anterior part of thighs smooth. Macroglands absent.

In alcohol (Figs. 3 and 4), dorsal parts of head and back dark grey with cream strip from snout to upper vent; lateral part of head dark grey with tympanum dark brown; upper part of flank dark grey, lower part creamy white; loreal region, upper lip, dorsal part of thigh, leg, foot dark grey; posterior part of thigh greyish brown with dark blotches. Dorsal part of forelimb dark grey without crossbars; dorsal part of thigh, tibia, and tarsus brownish dark grey without crossbars. Throat, chest, anterior and posterior parts of belly, ventral part of forearm and thigh, tibia creamy white. Tarsus and webbing dark brown. In live (Figs. 5 and 6), dorsal parts of head and back light brown with light brown stripe from snout to upper vent; lateral part of head reddish brown; upper part of flank yellow-beige, lower part creamy white; loreal region, tympanic region, tympanum, upper lip, dorsal part of thigh, leg, foot reddish brown; posterior part of thigh creamy white. Throat, chest, anterior and posterior parts of belly, ventral part of forearm, thigh tibia, tarsus and webbing creamy white.

Fig. 6 Photographs of live adult Hoplobatrachus salween sp. nov. specimens showing coloration and pattern: (A) dichromatism of adult male (left) and female (right); (B) dorsolateral view of adult male in its natural habitat, where all specimens were released into their natural habitat after photographing

Fig. 5 Photographs of a live adult Hoplobatrachus salween sp. nov. male paratype (KKUC 01176/THNHM 26832) showing the coloration and pattern: (A) dorsolateral view; (B) ventral part of head and body; (C) lateral view; (D) posterior thigh

Adult males have a nuptial pad on first finger, pouch of external vocal sac under side of jaw corners and vocal sac opening inside the mouth. During mating at night, the male specimens showed sexual dichromatism in having yellow coloration in all parts of the body and limbs. After the frogs were collected and kept overnight, the color changed to normal coloration, similar to females. Finally, the coloration of male specimens changed completely to become similar to females. During mating, coloration of females showed little yellow on the flanks. Many tubercles on the dorsal tibia in males, fewer tubercles in females.

Comparison

A morphological comparison of Hoplobatrachus species (H. crassus, H. litoralis, H. rugulosus, and H. tigerinus) and specimens from Salawin National Park (Mae Hong Son province, northwestern Thailand) is given in Table 3.

Table 3 Continued
SVL $=$ snout-vent length; IMT $=$ length of inner metatarsal tubercle

These results are similar to those of the molecular analyses, with the morphological characteristics of the specimens from Salawin National Park being similar to those of H. litoralis and H. tigerinus (see Hasan et al., 2012). However, the average body size of adult male specimens $(98.7 \pm 5.42 \mathrm{~mm}$, $n=2)$ was larger than that of H. litoralis $(90.0 \pm 5.96 \mathrm{~mm}$, $n=14)$. In contrast, adult females from the Salawin National Park $(94.1 \pm 1.49 \mathrm{~mm}, n=4)$ were smaller than H. litoralis $(101.4 \pm 12.01 \mathrm{~mm}, n=13)$. Measurements of the type series of adult H. salween sp. nov. are given in Table 4. The Salawin specimens could be differentiated from H. litoralis based on the following characteristics: snout to anterior eye stripe (indistinct stripe in H. salween sp. nov. vs. black stripe in H. litoralis), supralabial stripe (indistinct stripe in H. salween sp. nov. vs. black stripe in H. litoralis), dark supratympanic stripe (present in H. salween sp. nov. vs. absent in H. litoralis), hand pattern (mottled in H. salween sp. nov. vs. uniform in H. litoralis), web pattern (mottled with an irregular pattern in H. salween sp. nov. vs. uniform grey in H. litoralis), tubercles on the dorsal tibia of males (densely in H. salween sp. nov. vs. few in H. litoralis), sexual dichromatism (completely yellow except for the eye in H. salween sp. nov. vs. absent in H. litoralis), relative finger lengths (II $<$ IV $<\mathrm{I}<$ III in H. salween sp. nov. vs. IV $<\mathrm{II}<\mathrm{I}<\mathrm{III}$ in H. litoralis) and toe lengths ($\mathrm{I}<\mathrm{II}<\mathrm{V}<\mathrm{III}<\mathrm{IV}$ in H. salween sp. nov. vs. $\mathrm{I}<$ $\mathrm{II}<\mathrm{III}<\mathrm{V}<\mathrm{IV}$ in H. litoralis). Adult male specimens from Salawin National Park were smaller compared to H. tigerinus $(114.0 \pm 6.52 \mathrm{~mm}, n=9)$, as were the female specimens (113.7 $\pm 15.43 \mathrm{~mm}, n=6)$. The Salawin specimens could be differentiated from H. tigerinus based on the following characteristics: dark supratympanic stripe (present in H. salween sp. nov. vs. absent in H. tigerinus), thin stripe on the inner side along the tibia (absent in H. salween sp. nov. vs. present in H. tigerinus), sexual dichromatism (completely yellow except for the eye in H. salween sp. nov. vs. lemon yellow in H. tigerinus), and vocal sac color (yellow in H. salween sp. nov. vs. blue in H. tigerinus). The Salawin specimens can be distinguished from H. crassus based on their yellow vocal sacs (vs. blackish) and rounded inner metatarsal tubercles (vs. shovel shaped). The specimens from Salawin National Park differed from H. rugulosus in the following respects: smaller adult females $(106.5 \pm 16.4 \mathrm{~mm}$, $n=28$), snout shape (pointed in H. salween sp. nov. vs. rounded in H. rugulosus), snout to anterior eye stripe (indistinct in H. salween sp. nov. vs. absent in H. rugulosus), supralabial stripe (indistinct in H. salween sp. nov. vs. absent in H. rugulosus), mid-dorsal stripe (present in H. salween sp . nov. vs. absent in H. rugulosus), dark supratympanic stripe
Table 4 Selected measurements (measured in millimeters; mean \pm SD) of type series of adult Hoplobatrachus salween sp. nov.

Specimen/ Characteristic	KKUC 01173/ THNHM 26829 holotype	KKUC 011175/ THNHM 26830 paratype	THNHM 26827 paratype	THNHM 26828 paratype	$\begin{gathered} \text { Mean } \pm \text { SD } \\ \text { of females } \end{gathered}$	KKUC 01174/ THNHM 26831 paratype	KKUC 01176/ THNHM 26832 paratype
Sex	Female	Female	Female	Female		Male	Male
SVL	93.2	93.4	93.4	96.3	94.1 ± 1.49	94.8	102.4
HW	33.0	29.8	34.5	33.4	32.7 ± 2.03	33.6	34.8
HL	35.3	36.6	37.2	35.7	36.2 ± 0.87	37.4	39.8
MN	29.6	29.4	32.0	30.5	30.4 ± 1.20	31.4	34.7
MFE	23.4	20.9	24.4	24.2	23.2 ± 1.58	23.1	25.1
MBE	14.5	13.2	16.5	15.6	15.0 ± 1.43	15.0	15.9
IFE	13.5	11.6	14.4	11.7	12.8 ± 1.40	12.1	13.0
IBE	20.0	18.2	20.3	19.2	19.4 ± 0.94	19.9	19.9
FLL	20.1	18.4	21.0	21.5	20.2 ± 1.35	21.7	22.3
HAL	18.5	17.7	19.8	16.2	18.0 ± 1.54	19.9	20.7
TFL	9.6	8.1	10.0	8.8	9.1 ± 0.85	9.7	9.8
TL	50.1	47.9	52.8	51.0	50.5 ± 2.03	51.9	54.9
FOL	46.4	45.0	50.3	48.1	47.5 ± 2.27	50.8	51.3
FTL	27.1	26.0	27.2	28.1	27.1 ± 0.86	27.9	28.7
IN	5.4	5.3	4.9	5.5	5.3 ± 0.27	4.8	5.5
EN	8.3	7.7	7.8	8.3	8.0 ± 0.31	8.4	8.9
EL	8.8	7.7	9.3	8.4	8.6 ± 0.65	8.8	9.2
TYD	5.8	6.4	5.9	6.0	6.0 ± 0.23	7.7	8.4
TYE	2.8	3.3	4.4	4.3	3.7 ± 0.80	2.5	3.3
IUE	3.9	5.2	4.2	4.3	4.4 ± 0.56	4.4	4.4
UEW	6.4	6.8	7.2	6.8	6.8 ± 0.35	7.3	7.7
WTF	10.4	9.6	11.3	11.1	10.6 ± 0.78	10.2	11.2
WFF	9.6	7.27	8.9	8.8	8.7 ± 0.99	11.4	8.4
WI	10.2	8.5	10.3	10.3	9.8 ± 0.91	11.3	11.3
WII	6.8	5.8	6.1	7.8	6.6 ± 0.89	9.5	6.5
IMT	4.6	4.2	4.7	4.7	4.5 ± 0.24	5.4	5.0
ITL	11.2	10.0	11.7	11.5	11.1 ± 0.74	11.8	11.7
MTTF	25.9	23.3	27.7	26.0	25.7 ± 1.85	26.9	27.4
MTFF	26.9	22.9	27.5	26.0	25.8 ± 2.03	28.2	26.4
TFTF	17.3	16.2	17.1	17.7	17.1 ± 0.62	18.3	18.7
FFTF	20.2	18.7	21.0	21.3	20.3 ± 1.18	20.5	20.3
FL	46.6	44.7	45.9	47.6	46.2 ± 1.19	49.9	52.2
SL	15.3	15.5	14.6	15.0	15.1 ± 0.40	14.6	15.3
SN	5.3	6.6	5.1	5.7	5.7 ± 0.66	4.7	4.4
TW	17.5	13.0	20.0	18.2	17.2 ± 2.96	14.7	15.1
TFOL	71.3	66.2	70.9	72.5	70.3 ± 2.76	74.0	75.4

SVL= snout-vent length; HW = head width; HL= head length (from the back of the mandible to the tip of the snout); MN = distance from the back of the mandible to the nostril; MFE = distance from the back of the mandible to the front of the eye; $\mathrm{MBE}=$ distance from the back of the mandible to the back of the eye; IFE $=$ distance between the fronts of the eyes; $\operatorname{IBE}=$ distance between the back of the eyes; $\mathrm{IN}=$ internarial space; $\mathrm{EN}=$ distance from the front of the eye to the nostril; $\mathrm{EL}=$ eye length; $\mathrm{SN}=$ distance from the nostril to the tip of the snout; $\mathrm{SL}=$ distance from the front of the eye to the tip of the snout; TYD = greatest tympanum diameter; TYE = distance from tympanum to the back of the eye; IUE = minimum distance between upper eyelids; UEW = maximum inter upper eyelid width; HAL = hand length (from the base of the outer palmar tubercle to the tip of the toe); FLL = forelimb length (from the elbow to the base of the outer tubercle); TFL = third finger length (from the base of the first subarticular tubercle); $\mathrm{FL}=$ femur length (from vent to knee); TL = tibia length; TW= tibia width; FOL = foot length (from the base of the inner metatarsal ubercle to the tip of the toe); FTL = fourth toe length (from the base of the first subarticular tubercle to the tip of toe 4); TFOL = length of tarsus and foot (from base of tarsus to tip of fourth toe); IMT = length of inner metatarsal tubercle; ITL = inner toe length; MTTF = distance from the distal edge of the metatarsal tubercle to the maximum incurvation of the web between third and fourth toe; TFTF = distance from the maximum incurvation of the web between the third and fourth toes to the tip of the fourth toe; MTFF = distance from the distal edge of the metatarsal tubercle to the maximum incurvation of the web between the fourth and fifth toes; FFTF = distance from the maximum incurvation of the web between the fourth and fifth toes to the tip of the fourth toe; NTF = webbing between the third and fourth toes (from the base of the first subarticular tubercle); WFF = webbing between the fourth and fifth toes (from the base of the first subarticular tubercle); $W I=$ webbing between the third and fourth toes when folded along the fourth toe (from the base of the first subarticular tubercle); WII = webbing between the fourth and fifth toes when folded along the fourth toes (from the base of the first subarticular tubercle)
(present in H. salween sp. nov. vs. absent in H. rugulosus), sexual dichromatism (completely yellow except for the eye in H. salween sp. nov. vs. absent in H. rugulosus) and relative finger lengths (II $<\mathrm{IV}<\mathrm{I}<\mathrm{III}$ in H. salween sp . nov. vs. II $<\mathrm{I}<$ IV $<$ III in H. rugulosus).

Natural history notes

The type specimens were caught in a rice field during the breeding season (Fig. 7). Six tadpole specimens were collected from the same location with the new species. These tadpoles were assigned as tadpoles of the new species. The six tadpoles showed strong morphological similarities to tadpoles of the genus Hoplobatrachus. However, only the new species were found in the type locality. External and buccopharyngeal morphologies of the tadpoles are an ongoing study. Forest types around the sampled areas included dry evergreen, mixed deciduous and dry dipterocarp forests. The males were calling. The female paratypes were caught in a small stream bordering the rice field. The local people (Karen) utilize this frog and tadpoles as food. Currently, H. salween sp. nov. is known only from the type locality (Salawin National Park, Mae Sariang district, Mae Hong Son province, Thailand) and Myanmar (Bago and Yangon regions). The distribution map is presented in Fig. 8.

Discussion

The name Rana tigerina pantherina is a synonym of H. rugulosus (Stejneger, 1925). However, this name is now invalid (The Integrated Taxonomic Information System, 2022), as R. rugulosa was moved to the genus Hoplobatrachus. Dubois (1992) classified members of the genus Hoplobatrachus into H. occipitalis and H. tigerinus groups. The H. tigerinus group is composed of three species: H. crassus, H. rugulosus and

Fig. 7 Rice field habitat of Hoplobatrachus salween sp. nov. within mountain range in Salawin National Park, Mae Hong Son province, northwestern Thailand
H. tigerinus. H. litoralis (Hasan et al., 2012) and H. salween sp. nov., which were separated from H. tigerinus plus H. litoralis, were placed in this group. Several members of the genus Hoplobatrachus have long been mentioned in Thailand and Myanmar (Bourret, 1942; Taylor and Elbel, 1958; Taylor, 1962; Chanda et al., 2000; Khonsue and Thirakhupt, 2001; Schmalz and Zug, 2002; Chan-ard, 2003; Nabhitabhata et al., 2004; Nabhitabhata and Chan-ard, 2005; Chuaynkern and Chuaynkern, 2012; Duengkae et al., 2016; Niyomwan et al., 2019). This species has several synonyms that require further discussion (Frost, 2022). According to Taylor and Elbel (1958) and Taylor (1962), several specimens from northeastern and central Thailand were assigned to R. tigerina pantherina. Taylor (1962) recognized R. tigerina and R. rugulosa from Thailand. Taylor (1962) assigned three specimens from Ubon (Ubon Rachathani province), Bang Saen (Chon Buri province) and Doi Suthep (Chiang Mai province) to R. rugulosa. Based on the descriptions of R. tigerina pantherina (Taylor and Elbel, 1958; Taylor, 1962) and R. rugulosa (Taylor, 1962) specimens, they lack the mid-dorsal stripe. Thus, for the current study, they were assigned to H. rugulosus. However, molecular evidence suggested that these two cryptic species may be listed as H. rugulosus in Thailand. The results of the current study supported the existence of another species of Hoplobatrachus in Thailand, which is described here as a new species. The new species is not one of the two distinct species suggested by Pansook et al. (2012). Waiprom et al. (2017) first reported a new population of Hoplobatrachus species in Thailand (reported as Hoplobatrachus sp.); this population was intensively studied in the current work and described as a new species, H. salween sp. nov.

Annandale (1910) described Rana burkilli from Tavoy" (Dawei, southern Myanmar). R. burkilli was regarded as a synonym of R. rugulosa by Annandale (1917), and Bourret

Fig. 8 Map showing the distribution of Hoplobatrachus salween sp. nov. (yellow filled stars) and H. litoralis (red filled circles), where map was created using www.simplemappr.net
(1942) regarded it as a synonym of R. tigerina rugulosa. At present (see Chanda et al., 2000; Frost, 2022), R. burkilli is considered as a subjective synonym of H. rugulosus. The description of R. burkilli provided by Annandale (1910) is more similar to H. rugulosus than H. salween sp. nov. The snout of R. burkilli is much less pointed and does not project as far beyond the mouth, compared to that of H. salween sp. nov. (Fig. 3), and projects beyond the lower jaw (Fig. 4). The inner metatarsal tubercle is somewhat feebly developed in R. burkilli but is prominent and distinct in H. salween sp . nov. The skin of the back and dorsal surface of the thighs is more warty in R. burkilli than H. salween sp. nov. The mid-dorsal stripe is absent in R. burkilli but present in H. salween sp. nov. The current molecular analyses of the $16 \mathrm{~S}+\mathrm{Cytb}$ and Cytb genes indicated that H. rugulosus from Phangnga province, southern Thailand formed clades with H. rugulosus (Figs. 1 and 2).

Zug et al. (1998) listed H. rugulosus (as R. rugulosa) and H. tigerinus (as R. tigerina) from Chatthin Wildlife Sanctuary, central Myanmar. Recent work by Mulcahy et al. (2018), who sequenced three H. tigerinus specimens from Yangon and Bago, indicated that they are H. litoralis. However, these three 16 S sequences were analyzed based on specimens from Thailand, which the current study reassigned to H. salween sp. nov. In the $16 \mathrm{~S}+$ Cytb analysis, the three sequences from Myanmar and H. salween sp. nov. formed a clade with a high posterior probability value (1.00). Furthermore, the H. salween sp. nov. clade was separated from the H. litoralis clade with high posterior probability (1.00). These results supported that the three sequences from Myanmar were H. salween sp. nov. and distinguished them from H. litoralis of Bangladesh.

Based on the molecular evidence, H. salween sp. nov. clearly formed a clade separated from other related species. H. salween sp. nov. and H. litoralis from Cox's Bazar (Bangladesh) are very similar in external morphology; however, the average genetic distance between the species was 3.1% for 16 S and 11.5% for Cytb, similar to the distance separating H. litoralis from H. tigerinus (Hasan et al., 2012) supported by high posterior probability of BI. H. salween sp . nov. formed the same clade with H. litoralis from Bago and Yangon, Myanmar, supported by the posterior probability of 1.00 . In addition, the sequence divergence between the populations was very low (0.5% of 16 S). However, the sequence data of H. litoralis from Bago and Yangon used in the current study were derived from the 16 S only. Therefore, the current study included the Bogo and Yangon populations as members of H. salween sp. nov.

According to Vences et al. (2005), 3\% 16S divergence between populations is a threshold value that might warrant new species status. Analyses of mitochondrial Cytb, 12S, and 16 S rRNA genes of Hoplobatrachus and Euphlyctis from Bangladesh and other Asian countries have identified 13 major clades consistent with various cryptic species and the monophyly of Asian Hoplobatrachus species; however, the position of H. occipitalis has not been clarified (Alam et al., 2008). In addition, the current results indicated monophyly of Hoplobatrachus, and so H. occipitalis from Tanzania was included in the analyses. Sultana et al. (2016) provided a phylogenetic tree of Asian Hoplobatrachus based on the Cytb and 21 microsatellite markers. The tree revealed monophyly of each Hoplobatrachus species and the authors suggested that the environment specific to the river system (riverine delta region) has sustained the H. tigerinus population structure in this region. Kundu et al. (2020) provided an updated distribution of H. litoralis in the Dampa Tiger Reserve, Mizoram state, northeast India, based on morphological and molecular data, where the BI phylogenetic tree revealed monophyly of five Hoplobatrachus species (H. crassus, H. tigerinus, H. litoralis, H. rugulosus, H. occipitalis) and a sister relationship was presented between H. litoralis and H. tigerinus. Nevertheless, Hoplobatrachus specimens from Myanmar (Bago and Yangon in Mulcahy et al., 2018) and Thailand were not included in the work of Kundu et al. (2020). The current results showed that H. salween sp. nov. was more closely related to H. litoralis from Bangladesh than H. tigerinus, with a sister relationship demonstrated between the clades. Furthermore, examination of the distribution and natural history of H. salween sp. nov. indicated that the preferred habitat of the new species was rice fields at an elevation of approximately $86-106 \mathrm{~m}$ a.s.l., whereas H. litoralis prefers vegetated, marshy ditches/ponds beside wetlands created by hill streams at an elevation of $>3 \mathrm{~m}$ a.s.l. and occasionally, the species can be found at the mountain base, which has a different soil texture from mainland Bangladesh (Hasan et al., 2012).

Conflict of Interest

The authors declare that there are no conflicts of interest.

Acknowledgements

The following institutes facilitated this work: Khon Kaen University (Faculty of Science, Department of Biology), National

Abstract

Science Museum (Thailand Natural History Museum), Kasetsart University, Bangkok, Thailand (Faculty of Forestry, Department of Forest Biology), and Department of National Parks, Wildlife and Plant Conservation (Salawin National Park). The Department of National Parks, Wildlife and Plant Conservation granted access to the study area and approved the collection of specimens. Dr. George R. Zug, Prof. Dr. Arunrat Chaveerach and Dr. Unchaleeporn Ameamsri provided useful input. Special thanks go to all staff members of the Salawin National Park for assistance during the field surveys. This work was financially supported by the Research and Academic Services Research Fund of Khon Kaen University for Lecturer Students with High Potential (2019), awarded to Miss Prapaiporn Thongproh and Asst. Prof. Chantip Chuaynkern and the Research Capability Enhancement Program/Graduate Student Scholarships of the Faculty of Science, Khon Kaen University for Miss Jidapa Chunskul and Asst. Prof. Yodchaiy Chuaynkern.

References

Alam, M.S., Igawa, T., Khan, M.M.R., Islam, M.M., Kuramoto, M., Matsui, M., Kurabayashi, A., Sumida, M. 2008. Genetic divergence and evolutionary relationships in six species of genera Hoplobatrachus and Euphlyctis (Amphibia: Anura) from Bangladesh and other Asian countries revealed by mitochondrial gene sequences. Mol. Phylogenet. Evol. 48: 515-527. doi.org/10.1016/j.ympev. 2008. 04.020

Alam, M.S., Islam, M.M., Khan, M.M.R., Hasan, M., Wanichanon, R., Sumida, M. 2012. Postmating isolation in six species of three genera (Hoplobatrachus, Euphlyctis and Fejervarya) from family Dicroglossidae (Anura), with special reference to spontaneous production of allotriploids. Zoolog. Sci. 29: 743-752. doi.org/10.2108/ zsj. 29.743
Alam, M.S., Kurabayashi, A., Hayashi, Y., Sano, N., Khan, M.R., Fujii, T., Sumida, M. 2010. Complete mitochondrial genomes and novel gene rearrangements in two dicroglossid frogs, Hoplobatrachus tigerinus and Euphlyctis hexadactylus, from Bangladesh. Genes Genet. Syst. 85: 219-232. doi.org/10.1266/ggs.85.219
Annandale, N. 1910. An undescribed Burmese frog allied to Rana tigrina. Rec. Indian Museum. 5: 79.
Annandale, N. 1917. Zoological results of a tour in the Far East. In: Annandale, N., Kemp, S. (Eds.). Memoirs of the Asiatic Society of Bengal. Asiatic Society. West Bengal, India, pp. 119-156.
Barej, M.F., Schmitz, A., Günther, R., Loader, S.P., Mahlow, K., Rödel, M.O. 2014. The first endemic West African vertebrate family A new anuran family highlighting the uniqueness of the Upper Guinean biodiversity hotspot. Front. Zool. 11: 8. doi.org/10.1186/1742-9994-11-8
Batuwita, S., Udugampala, S., De Silva, M., Diao, J., Edirisinghe, U. 2019. A review of amphibian fauna of Sri Lanka: distribution, recent taxonomic changes and conservation. J. Anim. Divers. 1: 44-82.

Bourret, R. 1942. Amphibians of Indochina. Mémoires de l'Institut Océanographique d'Indochine 6: 1-547. [in French]
Chan-ard, T. 2003. A Photographic Guide to Amphibians in Thailand. Darnsutha Press Co., Ltd. Bangkok, Thailand.
Chan-ard, T., Grossmann, W., Gumprecht, A., Schulz, K-D. 1999. Amphibians and Reptiles of Peninsular Malaysia and Thailand. An illustrated Checklist. Bushmaster Publications. Würselen, Germany.
Chanda, S.K., Das, I., Dubois, A. 2000. Catalogue of amphibian types in the collection of the zoological survey of India. Hamadryad 25: 100-128.
Chuaynkern, Y., Chuaynkern, C. 2012. A checklist of amphibians in Thailand. Journal of Wildlife in Thailand 19: 163-211. [in Thai]
Chuaynkern, Y., Duengkae, P. 2014. Decline of amphibians in Thailand. In: Heatwole, H., Das, I. (Eds.). Conservation Biology of Amphibians of Asia: Status of Conservation and Decline of Amphibians in Eastern hemisphere. Natural History Publications. Borneo, Philippines, pp. 233-236.
Chuaynkern, Y., Ohler, A., Inthara, C., Duengkae, P., Makchai, S., Salangsingha, N. 2010. A revision of species in the subgenus Nidirana Dubois, 1992, with special attention to the identity of specimens allocated to Rana adenopleura Boulenger, 1909, and Rana chapaensis (Bourret, 1937) (Amphibia: Anura: Ranidae) from Thailand and Laos. Raffles Bull. Zool. 58: 291-310.
Department of National Parks, Wildlife and Plant Conservation. 2022. Salawin National Park. Bangkok, Thailand. http://portal.dnp.go.th/ Content/nationalpark?contentId=973, 10 May 2022.
Diesmos, A., van Dijk, P.P., Inger, R., et al. 2004. Hoplobatrachus rugulosus. The IUCN Red List of Threatened Species 2004: e.T58300A11760194. dx.doi.org/10.2305/IUCN.UK.2004.RLTS. T58300A11760194.en
Dubois, A. 1992. Notes sur la classification des Ranidae (Amphibiens Anoures). Bull. Mens. Soc. Linn. Lyon 61: 305-352. [in French]
Duengkae, P., Chuaynkern, Y., Chaiyes, A., Ponpituk, Y., Siri, S. 2016. Amphibians of Thailand. Biodiversity-based Economy Development Office. Bangkok, Thailand.
Dutta, S.K. 1997. Amphibians of India and Sri Lanka (Checklist and Bibliography). Odyssey Publishing House. Orissa, India.
Frost, D.R. 2022. Amphibian species of the world: An online reference. Version 6.0. http://research.amnh.org/herpetology/amphibia/index. html, 1 July 2022.
Gouy, M., Guindon, S., Gascuel, O. 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27: 221-224. doi: 10.1093/molbev/msp259. Epub 2009 Oct 23. PMID: 19854763

Grosjean, S., Vences, M., Dubois, A. 2004. Evolutionary significance of oral morphology in the carnivorous tadpoles of tiger frog, genus Hoplobatrachus (Ranidae). Biol. J. Linn. Soc. 81: 171-181. doi. org/10.1111/j.1095-8312.2003.00272.x
Hasan, M., Kuramoto, M., Islam, M.M., Alam, M.S., Khan, M.M.R., Sumida, M. 2012. A new species of genus Hoplobatrachus (Anura, Dicroglossidae) from the coastal belt of Bangladesh. Zootaxa 3312: 45-48.
International Union for Conservation of Nature and Natural Resources. 2022. The IUCN red list of threatened species. Version 2022-1. Cambridge, UK. https://www.iucnredlist.org, 4 October 2022.

Khonsue, W., Thirakhupt, K. 2001. A checklist of the amphibians in Thailand. Nat. Hist. J. Chulalongkorn Univ. 1: 69-82.
Kosuch, J., Vences, M., Dubois, A., Ohler, A., Böhme, W. 2001. Out of Asia: Mitochondrial DNA evidence for an oriental origin of Tiger frogs, genus Hoplobatrachus. Mol. Phylogenet. Evol. 21: 398-407. doi.org/10.1006/mpev.2001.1034
Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Phylogenet. Evol. 35: 1547-1549. doi.org/10.1093/molbev/msy096
Kundu, S., Lalremsanga, H.T., Purkayastha, J., Biakzuala, L., Chandra, K., Kumar, V. 2020. DNA barcoding elucidates the new altitude record and range-extension of lesser-known bullfrog (Hoplobatrachus litoralis) in northeast India. Mitochondrial DNA B 5: 2668-2672. doi.org/10.1080 /23802359.2020.1787259
Mulcahy, D.G., Lee, J.L., Miller, A.H., Chand, M., Thura, M.K., Zug, G.R. 2018. Filling the BINs of life: Report of an amphibian and reptile survey of the Tanintharyi (Tenasserim) Region of Myanmar, with DNA barcode data. ZooKeys 757: 85-152. doi.org.10.3897/zookeys.757.24453.
Nabhitabhata, J. 2000. Checklist of Amphibians and Reptiles in Thailand. Office of Environmental Policy and Planning. Bangkok, Thailand.
Nabhitabhata, J., Chan-ard, T. 2005. Thailand Red Data: Mammals, Reptiles and Amphibians. Office of Natural Resources and Environmental Policy and Planning. Bangkok, Thailand.
Nabhitabhata, J., Chan-ard, T., Chuaynkern, Y. 2004. Checklist of Amphibians and Reptiles in Thailand. Office of Environmental Policy and Planning. Bangkok, Thailand.
Niyomwan, P., Srisom, P., Pawangkhanant, P. 2019. Amphibians of Thailand. Parbpim. Bangkok, Thailand.
Nylander, J.A.A. 2004. MrModeltest V2. Uppsala University. Uppsala, Sweden.
Ohler, A. 1996. Systematic, morphometrics and biogeography of the genus Aubria (Ranidae, Pyxicephalinae). Alytes 13: 141-166.
Ohler, A., Dubois, A. 1999. The identity of Elachyglossa gyldenstolpei Anderson, 1916 (Amphibia, Ranidae), with comment on some aspects of statistical support to taxonomy. Zool. Scr. 28: 269-279.
Padhye, A., Manamendra-Arachchi, K., de Silva, A., Dutta, S., Shrestha, T.K., Bordoloi, S. 2008a. Hoplobatrachus crassus. The IUCN Red List of Threatened Species 2004: e.T58298A11754703. dx.doi. org/10.2305/IUCN.UK.2004.RLTS.T58298A11754703.en
Padhye, A., Manamendra-Arachchi, K., de Silva, A., et al. 2008b. Hoplobatrachus tigerinus. The IUCN Red List of Threatened Species 2008: e.T58301A11760496. dx.doi.org/10.2305/IUCN.UK. 2008. RLTS.T58301A11760496.en
Palumbi, S., Martin, A., Romano, S., McMillan, W.O., Stice, L., Grabowski, G. 1991. The Simple Fool's Guide to PCR. University of Hawaii Press. Honolulu, HI, USA.
Pansook, A., Khonsue, W., Piyapattanakorn, S., Pariyanonth, P. 2012. Phylogenetic relationships among Hoplobatrachus rugulosus in Thailand as inferred from mitochondrial DNA sequences of the cytochrome-b gene (Amphibia, Anura, Dicroglossidae). Zoolog. Sci. 29: 54-59. doi.org/10.2108/zsj.29.54
Prasad, V.K., Gautam, K.B., Gupta, S.K., Murthy, R.S., Ramesh, K., Shinde, A.D., Das, A. 2020. Identification of anuran species diversity of the Panna Tiger Reserve, Central India, using an integrated approach. Zootaxa 4851: 450-476. doi: 10.11646/zootaxa.4851.3.2

Rongchapho, P., Thongproh, P., Chuaynkern, C., Intuman, C., Chuaynkern, Y. 2021. Clutch size of the Rugose frog, Hoplobatrachus rugulosus (Wiegmann, 1834), from Phu Khiao Wildlife Sanctuary, northeastern Thailand. Herpetol. Notes 14: 1253-1256.
Ronquist, F., Teslenko, M., van der Mark, P., et al. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61: 539-542. doi.org/10.1093/sysbio/sys029
Schmalz, T.D., Zug, G.R. 2002. Observations on geographic variation in the Asian frog, Hoplobatrachus rugulosus (Anura: Ranidae). Hamadryad 27: 90-98.
Smith, M.A. 1940. The amphibians and reptiles obtained by Mr. Ronald Kaulback in Upper Burma. Rec. Ind. Mus. 42: 465-486.
Stejneger, L. 1925. Chinese amphibians and reptiles in the United States National Museum. Proc. U. S. Natl. Mus. 66: 1-115.
Sultana, N., Igawa, T., Islam, M.M., et al. 2016. Inter-and intra-specific genetic divergence of Asian tiger frogs (genus Hoplobatrachus), with special reference to the population structure of H. tigerinus in Bangladesh. Genes Genet. Syst. 91: 217-227. doi.org/10.1266/ggs. 16-00006
Sumida, M., Kondo, Y., Kanamori, Y., Nishioka, M. 2002. Interand intraspecific evolutionary relationships of the rice frog Rana limnocharis and the allied species R. cancrivora inferred from crossing experiments and mitochondrial DNA sequence of the 12 S and 16 S rRNA genes. Mol. Phylogenet. Evol. 25: 293-305. doi.org/10.1016/ S1055-7903(02)00243-9
Swofford, D.L. 2002. PAUP*: Phylogenetic Analysis Using Parsimony *(and Other Methods). Version 4. Sinauer Associates. Sunderland, UK.
Taylor, E.H. 1962. The amphibian fauna of Thailand. Univ. Kans. Sci. Bull. 43: 265-599.
Taylor, E.H., Elbel, R.E. 1958. Contribution to the herpetology of Thailand. Univ. Kans. Sci. Bull. 38: 1033-1189.
The Integrated Taxonomic Information System. 2022. Taxon author: Steindachner, 1867. https://www.itis.gov/servlet/SingleRpt/ RefRpt?search_type=author\&search_id=author_id\&search_id_value $=8672,26$ September 2022.
Vences, M., Thomas, M., Meijen, A.v.d., Chiari, Y., Vieites, D.R. 2005. Comparative performance of the 16 S rRNA gene in DNA barcoding of amphibians. Front. Zool. 2: 5. doi.org/10.1186/1742-9994-2-5
Waiprom, L., Duengkae, P., Chuaynkern, Y., Srigernngam, Y., Chuaynkern, C., Duangjai, S. 2017. Species diversity of amphibians in Salawin National Park, Mae Hong Son province. In: Proceedings of Forestry 2017, Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand, pp. 188-197.
Yu, D., Zhang, J., Zheng, R., Shao, C. 2012. The complete mitochondrial genome of Hoplobatrachus rugulosus (Anura: Dicroglossidae). Mitochondrial DNA 23: 336-337. doi.org/10.3109/19401736.2012. 690748
Yu, D., Zhang, J., Li, P., Zheng, R., Shao, C. 2015. Do cryptic species exist in Hoplobatrachus rugulosus? An examination using four nuclear genes, the Cyt b gene and the complete MT genome. PLoS One 10: e0124825. doi.org/10.1371/journal.pone. 0124825
Zug, G.R., Win, H., Thin, T., Min, T.Z., Lhon, W.Z., Kyaw, K. 1998. Herpetofauna of the Chatthin Wildlife Sanctuary, North-Central Myanmar with preliminary observations of their natural history. Hamadryad 23: 111-120.

[^0]: * Corresponding author.

 E-mail address: yodchaiy@kku.ac.th (Y. Chuaynkern)
 online 2452-316X print 2468-1458/Copyright © 2022. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/), production and hosting by Kasetsart University of Research and Development Institute on behalf of Kasetsart University.
 https://doi.org/10.34044/j.anres.2022.56.6.08

